ElliFit: An unconstrained, non-iterative, least squares based geometric Ellipse Fitting method
نویسندگان
چکیده
A novel ellipse fitting method which is selective for digital and noisy elliptic curves is proposed in this paper. The method aims at fitting an ellipse only when the data points are highly likely belong to an ellipse. This is achieved using the geometric distances of the ellipse from the data points. The proposed method models the non-linear problem of ellipse fitting as a combination of two operators, with one being linear, numerically stable, and easily invertible, while the other being non-linear but unique and easily invertible operator. As a consequence, the proposed ellipse fitting method has several salient properties like unconstrained, stable, non-iterative, and computationally inexpensive. The efficacy of the method is compared against six contemporary and recent algorithms based on the least squares formulation using five experiments of diverse practical challenges, like digitization, incomplete ellipses, and Gaussian noise (up to 30%). Three of the experiments comprise of a total of 44,400 ellipses (positive test data) while the other two are tested on 320,000 non-elliptic conics (negative test data). The results show that the proposed method is quite selective to elliptic shapes only and provides accurate fitting results, indicating potential application in medical, robotics, object detection, and other image processing industrial applications. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Geometric Interpretation and Precision Analysis of Algebraic Ellipse Fitting Using Least Squares Method
This paper presents a new approach for precision estimation for algebraic ellipse fitting based on combined least squares method. Our approach is based on coordinate description of the ellipse geometry to determine the error distances of the fitting method. Since it is an effective fitting algorithm the well-known Direct Ellipse Fitting method was selected as an algebraic method for precision e...
متن کاملLeast Squares Fitting of Circle and Ellipse
Fitting circles and ellipses to given points in the plane is a problem that arises in many application areas, e.g. computer graphics [1], coordinate metrology [2], petroleum engineering [11], statistics [7]. In the past, algorithms have been given which fit circles and ellipses in some least squares sense without minimizing the geometric distance to the given points [1], [6]. In this paper we p...
متن کاملLeast-Squares Fitting of Circles and Ellipses∗
Fitting circles and ellipses to given points in the plane is a problem that arises in many application areas, e.g. computer graphics [1], coordinate metrology [2], petroleum engineering [11], statistics [7]. In the past, algorithms have been given which fit circles and ellipses in some least squares sense without minimizing the geometric distance to the given points [1], [6]. In this paper we p...
متن کاملPerformance evaluation of iterative geometric fitting algorithms
The convergence performance of typical numerical schemes for geometric fitting for computer vision applications is compared. First, the problem and the associated KCR lower bound are stated. Then, three well known fitting algorithms are described: FNS, HEIV, and renormalization. To these, we add a special variant of Gauss-Newton iterations. For initialization of iterations, random choice, least...
متن کاملGeometric primitive feature extraction - concepts, algorithms, and applications
This thesis presents important insights and concepts related to the topic of the extraction of geometric primitives from the edge contours of digital images. Three specific problems related to this topic have been studied, viz., polygonal approximation of digital curves, tangent estimation of digital curves, and ellipse fitting anddetection from digital curves. For the problem of polygonal appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 46 شماره
صفحات -
تاریخ انتشار 2013